Search results
Results from the WOW.Com Content Network
The idea of a tree of life arose from ancient notions of a ladder-like progression from lower into higher forms of life (such as in the Great Chain of Being).Early representations of "branching" phylogenetic trees include a "paleontological chart" showing the geological relationships among plants and animals in the book Elementary Geology, by Edward Hitchcock (first edition: 1840).
The results are a phylogenetic tree—a diagram depicting the hypothetical relationships between organisms and their evolutionary history. [4] The tips of a phylogenetic tree can be living taxa or fossils, which represent the present time or "end" of an evolutionary lineage, respectively. A phylogenetic diagram can be rooted or unrooted.
The science that tries to reconstruct phylogenetic trees and thus discover clades is called phylogenetics or cladistics, the latter term coined by Ernst Mayr (1965), derived from "clade". The results of phylogenetic/cladistic analyses are tree-shaped diagrams called cladograms ; they, and all their branches, are phylogenetic hypotheses.
If a phylogenetic tree is reconstructed from DNA sequence data of a particular gene, a hard polytomy arises when three or more sampled genes trace their ancestry to a single gene in an ancestral organism. In contrast, a soft polytomy stems from branches on gene trees of finite temporal duration but for which no substitutions have occurred. [7]
The term sister group is used in phylogenetic analysis, however, only groups identified in the analysis are labeled as "sister groups".. An example is birds, whose commonly cited living sister group is the crocodiles, but that is true only when discussing extant organisms; [3] [4] when other, extinct groups are considered, the relationship between birds and crocodiles appears distant.
Lineages are typically visualized as subsets of a phylogenetic tree. A lineage is a single line of descent or linear chain within the tree, while a clade is a (usually branched) monophyletic group, containing a single ancestor and all its descendants. [3] Phylogenetic trees are typically created from DNA, RNA or protein sequence data. Apart ...
In bioinformatics, neighbor joining is a bottom-up (agglomerative) clustering method for the creation of phylogenetic trees, created by Naruya Saitou and Masatoshi Nei in 1987. [1] Usually based on DNA or protein sequence data, the algorithm requires knowledge of the distance between each pair of taxa (e.g., species or sequences) to create the ...
Phylogenetic trees generated by computational phylogenetics can be either rooted or unrooted depending on the input data and the algorithm used. A rooted tree is a directed graph that explicitly identifies a most recent common ancestor (MRCA), [citation needed] usually an inputed sequence that is not represented in the input.