Search results
Results from the WOW.Com Content Network
Some real numbers have two infinite decimal representations. For example, the number 1 may be equally represented by 1.000... as by 0.999... (where the infinite sequences of trailing 0's or 9's, respectively, are represented by "..."). Conventionally, the decimal representation without trailing 9's is preferred.
Similarly, if the final digit on the right of the decimal mark is zero—that is, if b n = 0 —it may be removed; conversely, trailing zeros may be added after the decimal mark without changing the represented number; [note 1] for example, 15 = 15.0 = 15.00 and 5.2 = 5.20 = 5.200.
[4] [5] In many contexts, when a number is spoken, the function of the separator is assumed by the spoken name of the symbol: comma or point in most cases. [6] [2] [7] In some specialized contexts, the word decimal is instead used for this purpose (such as in International Civil Aviation Organization-regulated air traffic control communications).
This is the minimum number of characters needed to encode a 32 bit number into 5 printable characters in a process similar to MIME-64 encoding, since 85 5 is only slightly bigger than 2 32. Such method is 6.7% more efficient than MIME-64 which encodes a 24 bit number into 4 printable characters. 89
Decimal: The standard Hindu–Arabic numeral system using base ten.; Binary: The base-two numeral system used by computers, with digits 0 and 1.; Ternary: The base-three numeral system with 0, 1, and 2 as digits.
In the decimal system, there are 10 digits, 0 through 9, which combine to form numbers. In an octal system, there are only 8 digits, 0 through 7. That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on.
A number has a terminating or repeating expansion if and only if it is rational; this does not depend on the base. A number that terminates in one base may repeat in another (thus 0.3 10 = 0.0100110011001... 2). An irrational number stays aperiodic (with an infinite number of non-repeating digits) in all integral bases.
Every terminating decimal representation can be written as a decimal fraction, a fraction whose denominator is a power of 10 (e.g. 1.585 = 1585 / 1000 ); it may also be written as a ratio of the form k / 2 n ·5 m (e.g. 1.585 = 317 / 2 3 ·5 2 ). However, every number with a terminating decimal representation also ...