Search results
Results from the WOW.Com Content Network
Products of the reaction are the constituent monosaccharides glucose and fructose. This glucose is added to a growing glucan chain. Glucansucrase uses the energy released from bond cleavage to drive glucan synthesis. [2] Both sucrose breakdown and glucan synthesis occur in the same active site. [3] The first step is carried out through a ...
β-Fructofuranosidase is an enzyme that catalyzes the hydrolysis (breakdown) of the table sugar sucrose into fructose and glucose. [1] [2] Alternative names for β-fructofuranosidase EC 3.2.1.26 include invertase, saccharase, glucosucrase, β-fructosidase, invertin, fructosylinvertase, alkaline invertase, and acid invertase.
Unlike glucose, fructose is not an insulin secretagogue, and can in fact lower circulating insulin. [4] In addition to the liver, fructose is metabolized in the intestines, testis, kidney, skeletal muscle, fat tissue and brain, [5] [6] but it is not transported into cells via insulin-sensitive pathways (insulin regulated transporters GLUT1 and ...
When a carbohydrate is broken into its component sugar molecules by hydrolysis (e.g., sucrose being broken down into glucose and fructose), this is recognized as saccharification. [2] Hydrolysis reactions can be the reverse of a condensation reaction in which two molecules join into a larger one and eject a water molecule. Thus hydrolysis adds ...
The reaction catalyzed by sucrose phosphorylase produces the valuable byproducts α-D-glucose-1-phosphate and fructose. α-D-glucose-1-phosphate can be reversibly converted by phosphoglucomutase to glucose-6-phosphate, [4] which is an important intermediate used in glycolysis.
ATP + fructose-6-phosphate → Fructose-1,6-bisphosphate + ADP But during gluconeogenesis (i.e. synthesis of glucose from pyruvate and other compounds) the reverse reaction takes place, being catalyzed by fructose-1,6-bisphosphatase (FBPase-1).
Reaction scheme showing hexosyl group transfer from UDP-glucose to fructose 6-phosphate. In the open conformation of H. orenii SPS, fructose 6-phosphate forms hydrogen bonds with Gly-33 and Gln-35 residues in the A domain while UDP-glucose interacts with the B-domain. Crystal structures studies reveal that after binding, the two domains twist ...
This histidine residue is important in the isomerization of glucose. [16] In the isomerization of glucose, Histidine 53 is used to catalyze the proton transfer of O1 to O5; the diagram for the ring opening mechanism is shown below. The first metal, mentioned earlier, coordinates to O3 and O4, and is used to dock the substrate. [16]