Search results
Results from the WOW.Com Content Network
Wiki markup quick reference (PDF download) For a full list of editing commands, see Help:Wikitext; For including parser functions, variables and behavior switches, see Help:Magic words; For a guide to displaying mathematical equations and formulas, see Help:Displaying a formula; For a guide to editing, see Wikipedia:Contributing to Wikipedia
Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound.
Prototypical conditional sentences in English are those of the form "If X, then Y". The clause X is referred to as the antecedent (or protasis), while the clause Y is called the consequent (or apodosis). A conditional is understood as expressing its consequent under the temporary hypothetical assumption of its antecedent.
A predictive conditional sentence concerns a situation dependent on a hypothetical (but entirely possible) future event. The consequence is normally also a statement about the future, although it may also be a consequent statement about present or past time (or a question or order). If I become President, I'll lower taxes.
A conditional statement may refer to: A conditional formula in logic and mathematics, which can be interpreted as: Material conditional; Strict conditional; Variably strict conditional; Relevance conditional; A conditional sentence in natural language, including: Indicative conditional; Counterfactual conditional; Biscuit conditional
The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), [2] and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of ...
The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol → {\displaystyle \rightarrow } is interpreted as material implication, a formula P → Q {\displaystyle P\rightarrow Q} is true unless P {\displaystyle P} is true and Q {\displaystyle Q} is false.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.