Search results
Results from the WOW.Com Content Network
A simple dynamic array can be constructed by allocating an array of fixed-size, typically larger than the number of elements immediately required. The elements of the dynamic array are stored contiguously at the start of the underlying array, and the remaining positions towards the end of the underlying array are reserved, or unused.
A dynamic array is a data structure for maintaining an array of items, allowing both random access to positions within the array and the ability to increase the array size by one. It is available in Java as the "ArrayList" type and in Python as the "list" type.
Some array data structures do not reallocate storage, but do store a count of the number of elements of the array in use, called the count or size. This effectively makes the array a dynamic array with a fixed maximum size or capacity; Pascal strings are examples of this.
In computer science, a hashed array tree (HAT) is a dynamic array data-structure published by Edward Sitarski in 1996, [1] maintaining an array of separate memory fragments (or "leaves") to store the data elements, unlike simple dynamic arrays which maintain their data in one contiguous memory area. Its primary objective is to reduce the amount ...
Special array types are often defined by the language's standard libraries. Dynamic lists are also more common and easier to implement [dubious – discuss] than dynamic arrays. Array types are distinguished from record types mainly because they allow the element indices to be computed at run time, as in the Pascal assignment A[I,J] := A[N-I,2*J].
Dynamic programming is both a mathematical optimization method and an algorithmic paradigm. ... To do this, we use another array p[i, j]; a predecessor array.
Object Pascal dynamic arrays are allocated on the heap. [12] In this language, it is called a dynamic array. The declaration of such a variable is similar to the declaration of a static array, but without specifying its size. The size of the array is given at the time of its use.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.