Search results
Results from the WOW.Com Content Network
It is associated with the binding and unbinding reaction of receptor (R) and ligand (L) molecules, which is formalized as: R + L ⇌ RL. The reaction is characterized by the on-rate constant k on and the off-rate constant k off, which have units of M −1 s −1 and s −1, respectively. In equilibrium, the forward binding transition R + L → ...
Receptor–ligand binding kinetics also involves the on- and off-rates of binding. A main goal of receptor–ligand kinetics is to determine the concentrations of the various kinetic species (i.e., the states of the receptor and ligand) at all times, from a given set of initial concentrations and a given set of rate constants.
The Scatchard equation is an equation used in molecular biology to calculate the affinity and number of binding sites ... (k off) related to the dissociation constant ...
The dissociation rate constant is defined using K off. [2] The Michaelis-Menten constant is denoted by K m and is represented by the equation K m = (K off + K cat)/ K on [definition needed]. The rates that the enzyme binds and dissociates from the substrate are represented by K on and K off respectively.
Variable-binding operators are logical operators that occur in almost every formal language. A binding operator Q takes two arguments: a variable v and an expression P, and when applied to its arguments produces a new expression Q(v, P). The meaning of binding operators is supplied by the semantics of the language and does not concern us here.
In coordination chemistry, a stability constant (also called formation constant or binding constant) is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex. There are two main kinds of complex: compounds formed by the ...
This method was first developed by Benesi and Hildebrand in 1949, [2] as a means to explain a phenomenon where iodine changes color in various aromatic solvents. This was attributed to the formation of an iodine-solvent complex through acid-base interactions, leading to the observed shifts in the absorption spectrum.
Chemical specificity is the ability of binding site of a macromolecule (such as a protein) to bind specific ligands. The fewer ligands a protein can bind, the greater its specificity. Specificity describes the strength of binding between a given protein and ligand.