Search results
Results from the WOW.Com Content Network
Pyridine-N-oxide is the heterocyclic compound with the formula C 5 H 5 NO. This colourless, hygroscopic solid is the product of the oxidation of pyridine. It was originally prepared using peroxyacids as the oxidising agent. The compound is used infrequently as an oxidizing reagent in organic synthesis. [1]
Pyridine is colorless, but older or impure samples can appear yellow, due to the formation of extended, unsaturated polymeric chains, which show significant electrical conductivity. [ page needed ] [ 17 ] The pyridine ring occurs in many important compounds, including agrochemicals , pharmaceuticals , and vitamins .
In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group (−NO 2) into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters ( −ONO 2 ) between alcohols and nitric acid (as occurs in the synthesis of nitroglycerin ).
Compared to benzene, the rate of electrophilic substitution on pyridine is much slower, due to the higher electronegativity of the nitrogen atom. Additionally, the nitrogen in pyridine easily gets a positive charge either by protonation (from nitration or sulfonation) or Lewis acids (such as AlCl 3) used to catalyze the reaction. This makes the ...
The first reaction is the formation of the N-2,4-dinitrophenyl-pyridinium salt (2). This salt is typically isolated and purified by recrystallization. The formation of the DNP-pyridinium salt. Upon heating a primary amine with the N-2,4-dinitrophenyl-pyridinium salt (2), the addition of the amine leads to the opening of the pyridinium ring.
The Boger pyridine synthesis is a cycloaddition approach to the formation of pyridines named after its inventor Dale L. Boger, who first reported it in 1981. [1] The reaction is a form of inverse-electron demand Diels-Alder reaction in which an enamine reacts with a 1,2,4-triazine to form the pyridine nucleus.
Pyridine-N-oxides bind to metals through the oxygen. According to X-ray crystallography, the M-O-N angle is approximately 130° in many of these complexes. As reflected by the pKa of 0.79 for C 5 H 5 NOH +, pyridine N-oxides are weakly basic ligands. Their complexes are generally high spin, hence they are kinetically labile.
The Kröhnke pyridine synthesis is reaction in organic synthesis between α-pyridinium methyl ketone salts and α, β-unsaturated carbonyl compounds used to generate highly functionalized pyridines. Pyridines occur widely in natural and synthetic products, so there is wide interest in routes for their synthesis.