enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...

  3. You Only Look Once - Wikipedia

    en.wikipedia.org/wiki/You_Only_Look_Once

    Objects detected with OpenCV's Deep Neural Network module by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. You Only Look Once (YOLO) is a series of real-time object detection systems based on convolutional neural networks.

  4. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  5. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object classification and detection, with millions of images and hundreds of object classes. In the ILSVRC 2014, [ 107 ] a large-scale visual recognition challenge, almost every highly ranked team used CNN as their basic framework.

  6. Viola–Jones object detection framework - Wikipedia

    en.wikipedia.org/wiki/Viola–Jones_object...

    The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. In short, it consists of a sequence of classifiers.

  7. Small object detection - Wikipedia

    en.wikipedia.org/wiki/Small_object_detection

    Small object detection is a particular case of object detection where various techniques are employed to detect small objects in digital images and videos. "Small objects" are objects having a small pixel footprint in the input image. In areas such as aerial imagery, state-of-the-art object detection techniques under performed because of small ...

  8. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    A deep CNN of (Dan Cireșan et al., 2011) at IDSIA was 60 times faster than an equivalent CPU implementation. [12] Between May 15, 2011, and September 10, 2012, their CNN won four image competitions and achieved SOTA for multiple image databases. [13] [14] [15] According to the AlexNet paper, [1] Cireșan's earlier net is "somewhat similar."

  9. Automatic target recognition - Wikipedia

    en.wikipedia.org/wiki/Automatic_target_recognition

    Automatic target recognition (ATR) is the ability for an algorithm or device to recognize targets or other objects based on data obtained from sensors.. Target recognition was initially done by using an audible representation of the received signal, where a trained operator who would decipher that sound to classify the target illuminated by the radar.