Search results
Results from the WOW.Com Content Network
The temperatures at the sample contacts become different, their difference is linear in current. The voltage drop across the circuit includes additionally the Seebeck thermoelectromotive force which again is again linear in current. As a result, there exists a thermal correction to the sample resistance even at negligibly small current. [35]
where is the current, measured in amperes; is the potential difference, measured in volts; and is the resistance, measured in ohms. For alternating currents , especially at higher frequencies, skin effect causes the current to spread unevenly across the conductor cross-section, with higher density near the surface, thus increasing the apparent ...
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
A current–voltage characteristic or I–V curve (current–voltage curve) is a relationship, typically represented as a chart or graph, between the electric current through a circuit, device, or material, and the corresponding voltage, or potential difference, across it.
The resistance is a consequence of the motion of charge through a conductor: in metals, for example, resistance is primarily due to collisions between electrons and ions. Ohm's law is a basic law of circuit theory, stating that the current passing through a resistance is directly proportional to the potential difference across it. The ...
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current.
Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2: scalar Electric potential: φ: Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar Electrical resistance: R: Electric potential per unit electric current ohm (Ω = V/A ...
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...