Search results
Results from the WOW.Com Content Network
A stack may be implemented as, for example, a singly linked list with a pointer to the top element. A stack may be implemented to have a bounded capacity. If the stack is full and does not contain enough space to accept another element, the stack is in a state of stack overflow. A stack is needed to implement depth-first search.
In a doubly linked list, one can insert or delete a node in a constant number of operations given only that node's address. To do the same in a singly linked list, one must have the address of the pointer to that node, which is either the handle for the whole list (in case of the first node) or the link field in the previous node. Some ...
A linked list is a collection of structures ordered not by their physical placement in memory but by logical links that are stored as part of the data in the structure itself. It is not necessary that it should be stored in the adjacent memory locations. Every structure has a data field and an address field.
When used to implement a set of stacks, the structure is called a spaghetti stack, cactus stack or saguaro stack (after the saguaro, a kind of cactus). [1] Parent pointer trees are also used as disjoint-set data structures. The structure can be regarded as a set of singly linked lists that share part of their structure, in particular, their ...
An abstract stack is a last-in-first-out structure, It is generally defined by three key operations: push, that inserts a data item onto the stack; pop, that removes a data item from it; and peek or top, that accesses a data item on top of the stack without removal.
A node is a basic unit of a data structure, such as a linked list or tree data structure. Nodes contain data and also may link to other nodes. Links between nodes are often implemented by pointers. In graph theory, the image provides a simplified view of a network, where each of the numbers represents a different node.
A linked list (also just called list) is a linear collection of data elements of any type, called nodes, where each node has itself a value, and points to the next node in the linked list. The principal advantage of a linked list over an array is that values can always be efficiently inserted and removed without relocating the rest of the list.
A non-blocking linked list is an example of non-blocking data structures designed to implement a linked list in shared memory using synchronization primitives: Compare-and-swap; Fetch-and-add; Load-link/store-conditional; Several strategies for implementing non-blocking lists have been suggested.