Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation , where N is the quantity and λ ( lambda ) is a positive rate called the exponential decay constant , disintegration constant , [ 1 ] rate constant , [ 2 ] or ...
When calculating or discussing relative growth rate, it is important to pay attention to the units of time being considered. [ 2 ] For example, if an initial population of S 0 bacteria doubles every twenty minutes, then at time interval t {\displaystyle t} it is given by solving the equation:
Once the MTBF of a system is known, and assuming a constant failure rate, the probability that any one particular system will be operational for a given duration can be inferred [1] from the reliability function of the exponential distribution, () =.
For any fixed b not equal to 1 (e.g. e or 2), the growth rate is given by the non-zero time τ. For any non-zero time τ the growth rate is given by the dimensionless positive number b. Thus the law of exponential growth can be written in different but mathematically equivalent forms, by using a different base.
Cumulative distribution function for the exponential distribution, often used as the cumulative failure function ().. To accurately model failures over time, a cumulative failure distribution, () must be defined, which can be any cumulative distribution function (CDF) that gradually increases from to .
For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...
The derivative (rate of change) of the exponential function is the exponential function itself. More generally, a function with a rate of change proportional to the function itself is expressible in terms of the exponential function. This derivative property leads to exponential growth or exponential decay.