Search results
Results from the WOW.Com Content Network
The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.
The size of the induced dipole moment is equal to the product of the strength of the external field and the dipole polarizability of ρ. Dipole moment values can be obtained from measurement of the dielectric constant. Some typical gas phase values given with the unit debye are: [7] carbon dioxide: 0; carbon monoxide: 0.112 D; ozone: 0.53 D
Schwarzschild's equation can not be used without first specifying the temperature, pressure, and composition of the medium through which radiation is traveling. When these parameters are first measured with a radiosonde, the observed spectrum of the downward flux of thermal infrared (DLR) agrees closely with calculations and varies dramatically ...
The RTE is a differential equation describing radiance (, ^,).It can be derived via conservation of energy.Briefly, the RTE states that a beam of light loses energy through divergence and extinction (including both absorption and scattering away from the beam) and gains energy from light sources in the medium and scattering directed towards the beam.
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of ...
In this equation, P is the (negative of the) field induced in the material when the "fixed" charges, the dipoles, shift in response to the total underlying field E, whereas D is the field due to the remaining charges, known as "free" charges. [5] [10] In general, P varies as a function of E depending on the medium, as described later in the ...
The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.
A dipole in such a uniform field may twist and oscillate, but receives no overall net force with no linear acceleration of the dipole. The dipole twists to align with the external field. However, in a non-uniform electric field a dipole may indeed receive a net force since the force on one end of the dipole no longer balances that on the other end.