Search results
Results from the WOW.Com Content Network
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
The main idea of the method is to partition the matrix into small square blocks of size t × t for some parameter t, and to use a lookup table to perform the algorithm quickly within each block. The index into the lookup table encodes the values of the matrix cells on the upper left of the block boundary prior to some operation of the algorithm ...
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
The ordinary matrix multiplication A B can be performed by setting α to one and C to an all-zeros matrix of the appropriate size. Also included in Level 3 are routines for computing B ← α T − 1 B , {\displaystyle {\boldsymbol {B}}\leftarrow \alpha {\boldsymbol {T}}^{-1}{\boldsymbol {B}},}
One can keep track of this fact by declaring an matrix to be of type , and similarly a matrix to be of type . This way, when q = n {\displaystyle q=n} the two arrows have matching source and target, m → n → p {\displaystyle m\to n\to p} , and can hence be composed to an arrow of type m → p {\displaystyle m\to p} .
Pages in category "Matrix multiplication algorithms" The following 4 pages are in this category, out of 4 total. ... By using this site, ...
Computing the k th power of a matrix needs k – 1 times the time of a single matrix multiplication, if it is done with the trivial algorithm (repeated multiplication). As this may be very time consuming, one generally prefers using exponentiation by squaring , which requires less than 2 log 2 k matrix multiplications, and is therefore much ...
For example, OpenBLAS's level-3 computations were primarily optimized for large and square matrices (often considered as regular-shaped matrices). And now irregular-shaped matrix multiplication are also supported, such as tall and skinny matrix multiplication (TSMM), [5] which supports faster deep learning calculations on the CPU. TSMM is one ...