Search results
Results from the WOW.Com Content Network
Enantiomers of a compound with more than one stereocenter are also diastereomers of the other stereoisomers of that compound that are not their mirror image (that is, excluding the opposing enantiomer). Diastereomers have different physical properties (unlike most aspects of enantiomers) and often different chemical reactivity.
Enantiotopic groups are identical and indistinguishable except in chiral environments. For instance, the CH 2 hydrogens in ethanol (CH 3 CH 2 OH) are normally enantiotopic, but can be made different (diastereotopic) if combined with a chiral center, for instance by conversion to an ester of a chiral carboxylic acid such as lactic acid, or if coordinated to a chiral metal center, or if ...
Diastereomers are distinct molecular configurations that are a broader category. [3] They usually differ in physical characteristics as well as chemical properties. If two molecules with more than one chiral centre differ in one or more (but not all) centres, they are diastereomers. All stereoisomers that are not enantiomers are diastereomers.
A mixture of equal amounts of each enantiomer, a racemic mixture or a racemate, does not rotate light. [7] [8] [9] Stereoisomers include both enantiomers and diastereomers. Diastereomers, like enantiomers, share the same molecular formula and are also nonsuperposable onto each other; however, they are not mirror images of each other. [10]
A configurational stereoisomer is a stereoisomer of a reference molecule that has the opposite configuration at a stereocenter (e.g., R- vs S-or E- vs Z-). This means that configurational isomers can be interconverted only by breaking covalent bonds to the stereocenter, for example, by inverting the configurations of some or all of the ...
An example of modest stereoselectivity is the dehydrohalogenation of 2-iodobutane which yields 60% trans-2-butene and 20% cis-2-butene. [5] Since alkene geometric isomers are also classified as diastereomers, this reaction would also be called diastereoselective.
Enantioselective synthesis, also called asymmetric synthesis, [1] is a form of chemical synthesis.It is defined by IUPAC as "a chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric (enantiomeric or diastereomeric) products in unequal amounts."
More generally, for any pair of enantiomers, all of the descriptors are opposite: (R,R) and (S,S) are enantiomers, as are (R,S) and (S,R). Diastereomers have at least one descriptor in common; for example (R,S) and (R,R) are diastereomers, as are (S,R) and (S,S). This holds true also for compounds having more than two stereocenters: if two ...