Search results
Results from the WOW.Com Content Network
Substrate-level phosphorylation exemplified with the conversion of ADP to ATP. Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the reaction catalyzed by creatine kinase is not considered as "substrate-level ...
Oxidative phosphorylation (UK / ɒ k ˈ s ɪ d. ə. t ɪ v /, US / ˈ ɑː k. s ɪ ˌ d eɪ. t ɪ v / [1]) or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP).
Phosphorylation of glucose and fructose 6-phosphate uses two ATP from the cytoplasm. Glycolysis pay-off phase 4 Substrate-level phosphorylation 2 NADH 3 or 5 Oxidative phosphorylation: Each NADH produces net 1.5 ATP (instead of usual 2.5) due to NADH transport over the mitochondrial membrane Oxidative decarboxylation of pyruvate 2 NADH 5
An example of a coupled reaction is the phosphorylation of fructose-6-phosphate to form the intermediate fructose-1,6-bisphosphate by the enzyme phosphofructokinase accompanied by the hydrolysis of ATP in the pathway of glycolysis. The resulting chemical reaction within the metabolic pathway is highly thermodynamically favorable and, as a ...
During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a process referred to as oxidative phosphorylation. ATP is also synthesized by substrate-level phosphorylation during glycolysis .
Oxidative phosphorylation – The last stage of the aerobic system produces the largest yield of ATP – a total of 34 ATP molecules. It is called oxidative phosphorylation because oxygen is the final acceptor of electrons and hydrogen ions (hence oxidative) and an extra phosphate is added to ADP to form ATP (hence phosphorylation).
The latter is the case when the substrate is succinate or extramitochondrial NADH being oxidized via the glycerol phosphate shuttle; or other UQH2-linked dehydrogenase. During normal aerobic respiration the ratio would be somewhere between these values, as the TCA cycle produces both NADH and ubiquinol.
Oxidative phosphorylation contributes the majority of the ATP produced, compared to glycolysis and the Krebs cycle. While the ATP count is glycolysis and the Krebs cycle is two ATP molecules, the electron transport chain contributes, at most, twenty-eight ATP molecules. A contributing factor is due to the energy potentials of NADH and FADH 2.