Search results
Results from the WOW.Com Content Network
l 3 n −1 In chemistry and related fields, the molar volume , symbol V m , [ 1 ] or V ~ {\displaystyle {\tilde {V}}} of a substance is the ratio of the volume ( V ) occupied by a substance to the amount of substance ( n ), usually at a given temperature and pressure .
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
1 dm 3 /mol = 1 L/mol = 1 m 3 /kmol = 0.001 m 3 /mol (where kmol is kilomoles = 1000 moles) References This page was last ...
A litre is a cubic decimetre, which is the volume of a cube 10 centimetres × 10 centimetres × 10 centimetres (1 L ≡ 1 dm 3 ≡ 1000 cm 3). Hence 1 L ≡ 0.001 m 3 ≡ 1000 cm 3; and 1 m 3 (i.e. a cubic metre, which is the SI unit for volume) is exactly 1000 L.
The number density (symbol: n or ρ N) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric number density, two-dimensional areal number density, or one-dimensional linear number density.
The area required to calculate the mass flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface, e.g. for substances passing through a filter or a membrane, the real surface is the (generally curved) surface area of the filter, macroscopically - ignoring the area spanned by the holes in the filter/membrane ...
Values for specific rotation are reported in units of deg·mL·g −1 ·dm −1, which are typically shortened to just degrees, wherein the other components of the unit are tacitly assumed. [4] These values should always be accompanied by information about the temperature, solvent and wavelength of light used, as all of these variables can ...
Consider a long, thin rod of mass and length .To calculate the average linear mass density, ¯, of this one dimensional object, we can simply divide the total mass, , by the total length, : ¯ = If we describe the rod as having a varying mass (one that varies as a function of position along the length of the rod, ), we can write: = Each infinitesimal unit of mass, , is equal to the product of ...