Search results
Results from the WOW.Com Content Network
Data cleansing or data cleaning is the process of identifying and correcting (or removing) corrupt, inaccurate, or irrelevant records from a dataset, table, or database. It involves detecting incomplete, incorrect, or inaccurate parts of the data and then replacing, modifying, or deleting the affected data. [ 1 ]
Listwise deletion is also problematic when the reason for missing data may not be random (i.e., questions in questionnaires aiming to extract sensitive information. [3] Due to the method, much of the subjects' data will be excluded from analysis, leaving a bias in data findings. For instance, a questionnaire may include questions about ...
There are several types of data cleaning, that are dependent upon the type of data in the set; this could be phone numbers, email addresses, employers, or other values. [26] [27] Quantitative data methods for outlier detection, can be used to get rid of data that appears to have a higher likelihood of being input incorrectly. [28]
Data sanitization methods are also applied for the cleaning of sensitive data, such as through heuristic-based methods, machine-learning based methods, and k-source anonymity. [ 2 ] This erasure is necessary as an increasing amount of data is moving to online storage, which poses a privacy risk in the situation that the device is resold to ...
Extract, transform, load (ETL) is a three-phase computing process where data is extracted from an input source, transformed (including cleaning), and loaded into an output data container. The data can be collected from one or more sources and it can also be output to one or more destinations.
A once-common method of imputation was hot-deck imputation where a missing value was imputed from a randomly selected similar record. The term "hot deck" dates back to the storage of data on punched cards, and indicates that the information donors come from the same dataset as the recipients.
Data reduction is the transformation of numerical or alphabetical digital information derived empirically or experimentally into a corrected, ordered, and simplified form. . The purpose of data reduction can be two-fold: reduce the number of data records by eliminating invalid data or produce summary data and statistics at different aggregation levels for various applications
Data analysis; Data assimilation; Data binning; Data classification (business intelligence) Data cleansing; Data clustering; Data collection; Data Desk – software; Data dredging; Data fusion; Data generating process; Data mining; Data reduction; Data point; Data quality assurance; Data set; Data-snooping bias; Data stream clustering; Data ...