enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carnot heat engine - Wikipedia

    en.wikipedia.org/wiki/Carnot_heat_engine

    Carnot engine diagram (modern) - where an amount of heat Q H flows from a high temperature T H furnace through the fluid of the "working body" (working substance) and the remaining heat Q C flows into the cold sink T C, thus forcing the working substance to do mechanical work W on the surroundings, via cycles of contractions and expansions.

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.

  4. Carnot's theorem (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Carnot's_theorem...

    Then if is more efficient than , the machine will violate the second law of thermodynamics. Since a Carnot heat engine is a reversible heat engine, and all reversible heat engines operate with the same efficiency between the same reservoirs, we have the first part of Carnot's theorem:

  5. Talk:Carnot's theorem (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Talk:Carnot's_theorem...

    By conservation of energy, the maximum amount of work/energy that can be extracted from a heat engine = difference between heat/energy taken from the hotter reservoir (Qh) and heat/energy lost to the colder reservoir (Qc) = Qh - Qc. The efficiency of an engine is defined as: η = work out/ energy in = (Qh - Qc)/Qh = 1 - Qc/Qh So what is Qc/Qh?

  6. Carnot cycle - Wikipedia

    en.wikipedia.org/wiki/Carnot_cycle

    A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through ...

  7. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.

  8. Heat pump and refrigeration cycle - Wikipedia

    en.wikipedia.org/wiki/Heat_pump_and...

    Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. [1] A heat pump is a mechanical system that transmits heat from one location (the "source") at a certain temperature to another location (the "sink" or "heat sink") at a higher temperature. [2]

  9. Thermodynamic state - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_state

    In thermodynamics, a thermodynamic state of a system is its condition at a specific time; that is, fully identified by values of a suitable set of parameters known as state variables, state parameters or thermodynamic variables.