Search results
Results from the WOW.Com Content Network
Conical spiral with an archimedean spiral as floor projection Floor projection: Fermat's spiral Floor projection: logarithmic spiral Floor projection: hyperbolic spiral. In mathematics, a conical spiral, also known as a conical helix, [1] is a space curve on a right circular cone, whose floor projection is a plane spiral.
For <, spiral-ring pattern; =, regular spiral; >, loose spiral. R is the distance of spiral starting point (0, R) to the center. R is the distance of spiral starting point (0, R) to the center. The calculated x and y have to be rotated backward by ( − θ {\displaystyle -\theta } ) for plotting.
In mathematics, a conchospiral a specific type of space spiral on the surface of a cone (a conical spiral), whose floor projection is a logarithmic spiral. Conchospirals are used in biology for modelling snail shells, and flight paths of insects [1] [2] and in electrical engineering for the construction of antennas. [3] [4]
Two well-known spiral space curves are conical spirals and spherical spirals, defined below. Another instance of space spirals is the toroidal spiral. [8] A spiral wound around a helix, [9] also known as double-twisted helix, [10] represents objects such as coiled coil filaments.
Thus, Poinsot spiral motion only occurs for repulsive inverse-cube central forces, and applies in the case that L is not too large for the given μ. Taking the limit of k or λ going to zero yields the third form of a Cotes's spiral, the so-called reciprocal spiral or hyperbolic spiral , as a solution [ 23 ]
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to Archimedes' spiral (the specific arithmetic spiral of ...
The equation must satisfy the condition that ′ = (no penetration on the solid surface) and also must correspond to conditions behind the shock wave at =, where is the half-angle of shock cone, which must be determined as part of the solution for a given incoming flow Mach number and . The Taylor–Maccoll equation has no known explicit ...
Coordinate surfaces of the conical coordinates. The constants b and c were chosen as 1 and 2, respectively. The red sphere represents r = 2, the blue elliptic cone aligned with the vertical z-axis represents μ=cosh(1) and the yellow elliptic cone aligned with the (green) x-axis corresponds to ν 2 = 2/3.