enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    Opposite sides of a parallelogram are parallel (by definition) and so will never intersect. The area of a parallelogram is twice the area of a triangle created by one of its diagonals. The area of a parallelogram is also equal to the magnitude of the vector cross product of two adjacent sides.

  3. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.

  4. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  5. Theorem of the gnomon - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_the_gnomon

    The proof of the theorem is straightforward if one considers the areas of the main parallelogram and the two inner parallelograms around its diagonal: first, the difference between the main parallelogram and the two inner parallelograms is exactly equal to the combined area of the two complements;

  6. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    green area = blue area Construction for proof of parallelogram generalization. Pappus's area theorem is a further generalization, that applies to triangles that are not right triangles, using parallelograms on the three sides in place of squares (squares are a special case, of course). The upper figure shows that for a scalene triangle, the ...

  7. Gnomon (figure) - Wikipedia

    en.wikipedia.org/wiki/Gnomon_(figure)

    A metaphor based around the geometry of a gnomon plays an important role in the literary analysis of James Joyce's Dubliners, involving both a play on words between "paralysis" and "parallelogram", and the geometric meaning of a gnomon as something fragmentary, diminished from its completed shape. [6] [7] [8] [9]

  8. Polarization identity - Wikipedia

    en.wikipedia.org/wiki/Polarization_identity

    These various forms are all equivalent by the parallelogram law: [proof 1] ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖. This further implies that L p {\displaystyle L^{p}} class is not a Hilbert space whenever ⁠ p ≠ 2 {\displaystyle p\neq 2} ⁠ , as the parallelogram law is not satisfied.

  9. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    If the quadrilateral is a parallelogram, then the midpoints of the diagonals coincide so that the connecting line segment has length 0. In addition the parallel sides are of equal length, hence Euler's theorem reduces to + = + which is the parallelogram law.