enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Augmented Lagrangian method - Wikipedia

    en.wikipedia.org/wiki/Augmented_Lagrangian_method

    Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier.

  3. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  4. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    In mathematical optimization, the Karush–Kuhn–Tucker (KKT) conditions, also known as the Kuhn–Tucker conditions, are first derivative tests (sometimes called first-order necessary conditions) for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied.

  5. Envelope theorem - Wikipedia

    en.wikipedia.org/wiki/Envelope_theorem

    In a similar vein, Milgrom and Segal's (2002) Theorem 3 implies that the value function must be differentiable at = and hence satisfy the envelope formula when the family {(,)} is equi-differentiable at (,) and ((),) is single-valued and continuous at =, even if the maximizer is not differentiable at (e.g., if is described by a set of ...

  6. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    Intuitively, the constraints can be thought of as reducing the problem to one with free variables. (For example, the maximization of f ( x 1 , x 2 , x 3 ) {\displaystyle f\left(x_{1},x_{2},x_{3}\right)} subject to the constraint x 1 + x 2 + x 3 = 1 {\displaystyle x_{1}+x_{2}+x_{3}=1} can be reduced to the maximization of f ( x 1 , x 2 , 1 − x ...

  7. Constraint (computational chemistry) - Wikipedia

    en.wikipedia.org/wiki/Constraint_(computational...

    However, explicit constraint forces give rise to inefficiency; more computational power is required to get a trajectory of a given length. Therefore, internal coordinates and implicit-force constraint solvers are generally preferred. Constraint algorithms achieve computational efficiency by neglecting motion along some degrees of freedom.

  8. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    Optimal control problem benchmark (Luus) with an integral objective, inequality, and differential constraint. Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. [1]

  9. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    In typed lambda calculus, functions can be applied only if they are capable of accepting the given input's "type" of data. Typed lambda calculi are strictly weaker than the untyped lambda calculus, which is the primary subject of this article, in the sense that typed lambda calculi can express less than the untyped calculus can. On the other ...