enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalence (measure theory) - Wikipedia

    en.wikipedia.org/wiki/Equivalence_(measure_theory)

    Define the two measures on the real line as = [,] () = [,] for all Borel sets. Then and are equivalent, since all sets outside of [,] have and measure zero, and a set inside [,] is a -null set or a -null set exactly when it is a null set with respect to Lebesgue measure.

  3. Equinumerosity - Wikipedia

    en.wikipedia.org/wiki/Equinumerosity

    Assuming the existence of an infinite set N consisting of all natural numbers and assuming the existence of the power set of any given set allows the definition of a sequence N, P(N), P(P(N)), P(P(P(N))), … of infinite sets where each set is the power set of the set preceding it. By Cantor's theorem, the cardinality of each set in this ...

  4. Equivalent definitions of mathematical structures - Wikipedia

    en.wikipedia.org/wiki/Equivalent_definitions_of...

    Namely, the bijection X × X → Y × Y sends (x 1,x 2) to (f(x 1),f(x 2)); the bijection P(X) → P(Y) sends a subset A of X into its image f(A) in Y; and so on, recursively: a scale set being either product of scale sets or power set of a scale set, one of the two constructions applies. Let (X,U) and (Y,V) be two structures of the same signature.

  5. Equality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equality_(mathematics)

    Ernst Zermelo, a contributer to modern Set theory, was the first to explicitly formalize set equality in his Zermelo set theory (now obsolete), by his Axiom der Bestimmtheit. [31] Equality of sets is axiomatized in set theory in two different ways, depending on whether the axioms are based on a first-order language with or without equality.

  6. Glossary of set theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_set_theory

    1. The difference of two sets: x~y is the set of elements of x not in y. 2. An equivalence relation \ The difference of two sets: x\y is the set of elements of x not in y. − The difference of two sets: x−y is the set of elements of x not in y. ≈ Has the same cardinality as × A product of sets / A quotient of a set by an equivalence ...

  7. Equivalence class - Wikipedia

    en.wikipedia.org/wiki/Equivalence_class

    The set of the equivalence classes is sometimes called the quotient set or the quotient space of by , and is denoted by /. When the set S {\displaystyle S} has some structure (such as a group operation or a topology ) and the equivalence relation ∼ {\displaystyle \,\sim \,} is compatible with this structure, the quotient set often inherits a ...

  8. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    Given any set , an equivalence relation over the set [] of all functions can be obtained as follows. Two functions are deemed equivalent when their respective sets of fixpoints have the same cardinality, corresponding to cycles of length one in a permutation.

  9. Kernel (set theory) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(set_theory)

    In set theory, the kernel of a function (or equivalence kernel [1]) may be taken to be either the equivalence relation on the function's domain that roughly expresses the idea of "equivalent as far as the function can tell", [2] or; the corresponding partition of the domain.