enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Algebra extension - Wikipedia

    en.wikipedia.org/wiki/Algebra_extension

    Given a commutative ring A, an A-extension or an extension of an A-algebra is defined in the same way by replacing "ring" with "algebra over A" and "abelian groups" with "A-modules". An extension is said to be trivial or to split if ϕ {\displaystyle \phi } splits; i.e., ϕ {\displaystyle \phi } admits a section that is a ring homomorphism [ 2 ...

  4. Carathéodory's extension theorem - Wikipedia

    en.wikipedia.org/wiki/Carathéodory's_extension...

    Actually, Carathéodory's extension theorem can be slightly generalized by replacing ring by semi-field. [2] The definition of semi-ring may seem a bit convoluted, but the following example shows why it is useful (moreover it allows us to give an explicit representation of the smallest ring containing some semi-ring).

  5. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    Explicitly, if E is a subset of F, then the quotient ring of F by the ideal generated by E is called the ring with generators X and relations E. If we used a ring, say, A as a base ring instead of ⁠ Z , {\displaystyle \mathbb {Z} ,} ⁠ then the resulting ring will be over A .

  6. Nagata ring - Wikipedia

    en.wikipedia.org/wiki/Nagata_ring

    A ring is called universally Japanese if every finitely generated integral domain over it is Japanese, and is called a Nagata ring, named for Masayoshi Nagata, or a pseudo-geometric ring if it is Noetherian and universally Japanese (or, which turns out to be the same, if it is Noetherian and all of its quotients by a prime ideal are N-2 rings ...

  7. Wedderburn–Artin theorem - Wikipedia

    en.wikipedia.org/wiki/Wedderburn–Artin_theorem

    In algebra, the Wedderburn–Artin theorem is a classification theorem for semisimple rings and semisimple algebras.The theorem states that an (Artinian) [a] semisimple ring R is isomorphic to a product of finitely many n i-by-n i matrix rings over division rings D i, for some integers n i, both of which are uniquely determined up to permutation of the index i.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Polynomial ring - Wikipedia

    en.wikipedia.org/wiki/Polynomial_ring

    The set of functions from a monoid N to a ring R which are nonzero at only finitely many places can be given the structure of a ring known as R[N], the monoid ring of N with coefficients in R. The addition is defined component-wise, so that if c = a + b, then c n = a n + b n for every n in N.