Search results
Results from the WOW.Com Content Network
For any pair of positive integers n and k, the number of k-tuples of positive integers whose sum is n is equal to the number of (k − 1)-element subsets of a set with n − 1 elements. For example, if n = 10 and k = 4, the theorem gives the number of solutions to x 1 + x 2 + x 3 + x 4 = 10 (with x 1, x 2, x 3, x 4 > 0) as the binomial coefficient
In mathematics, economics and computer science, particularly in the fields of combinatorics, game theory and algorithms, the stable-roommate problem (SRP) is the problem of finding a stable matching for an even-sized set. A matching is a separation of the set into disjoint pairs ("roommates
A Langford pairing for n = 4.. In combinatorial mathematics, a Langford pairing, also called a Langford sequence, is a permutation of the sequence of 2n numbers 1, 1, 2, 2, ..., n, n in which the two 1s are one unit apart, the two 2s are two units apart, and more generally the two copies of each number k are k units apart.
In a uniformly-random instance of the stable marriage problem with n men and n women, the average number of stable matchings is asymptotically . [6] In a stable marriage instance chosen to maximize the number of different stable matchings, this number is an exponential function of n . [ 7 ]
Radcliffe and Scott showed that if n is prime, 3 is sufficient, and for any n, 9 times the number of prime factors of n is sufficient. Pebody showed that for any n, 6 is sufficient and, in a followup paper, that for odd n, 4 is sufficient. He conjectured that 4 is again sufficient for even n greater than 10, but this remains unproven.
Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets S i indexed by the natural numbers , enumerative combinatorics seeks to describe a counting function which counts the number of objects in S n for each n .
Initial analysis was largely focused on enumerating solutions, with results first appearing in 2004. [1] For classical Sudoku, the number of filled grids is 6,670,903,752,021,072,936,960 (6.671 × 10 21), which reduces to 5,472,730,538 essentially different solutions under the validity-preserving
LeetCode LLC, doing business as LeetCode, is an online platform for coding interview preparation. The platform provides coding and algorithmic problems intended for users to practice coding . [ 1 ] LeetCode has gained popularity among job seekers in the software industry and coding enthusiasts as a resource for technical interviews and coding ...