Search results
Results from the WOW.Com Content Network
Primary: The chorionic villi are at first small and non-vascular. 13–15 days: trophoblast only [1] Secondary: The villi increase in size and ramify, while the mesoderm grows into them. 16–21 days: trophoblast and mesoderm [1] Tertiary: Branches of the umbilical artery and umbilical vein grow into the mesoderm, and in this way the chorionic ...
The image above contains clickable links Interactive image of nucleic acid structure (primary, secondary, tertiary, and quaternary) using DNA helices and examples from the VS ribozyme and telomerase and nucleosome. Nucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar.
The double helix is the dominant tertiary structure for biological DNA, and is also a possible structure for RNA. Three DNA conformations are believed to be found in nature, A-DNA, B-DNA, and Z-DNA. The "B" form described by James D. Watson and Francis Crick is believed to predominate in cells. [2]
The DNA double helix biopolymer of nucleic acid is held together by nucleotides which base pair together. [3] In B-DNA, the most common double helical structure found in nature, the double helix is right-handed with about 10–10.5 base pairs per turn. [4] The double helix structure of DNA contains a major groove and minor groove.
Similarly other biomolecules such as proteins, nucleic acids have four levels of structural arrangement: primary, secondary, tertiary, and quaternary structure. Primary structure is the linear sequence of nucleotides, secondary structure involves small local folding motifs, and tertiary structure is the 3D folded shape of nucleic acid molecule.
The nucleobases are important in base pairing of strands to form higher-level secondary and tertiary structures such as the famed double helix. The possible letters are A, C, G, and T, representing the four nucleotide bases of a DNA strand – adenine, cytosine, guanine, thymine – covalently linked to a phosphodiester backbone.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Secondary constrictions are the constricted or the narrow region found at any point of the chromosome other than that of centromere (primary constriction). The difference between the two constrictions can be noticed during anaphase , as chromosomes can only bend at the site of primary constriction.