Search results
Results from the WOW.Com Content Network
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
In many fields, equilibria or stability are fundamental concepts that can be described in terms of fixed points. Some examples follow. In projective geometry, a fixed point of a projectivity has been called a double point. [8] [9] In economics, a Nash equilibrium of a game is a fixed point of the game's best response correspondence.
Fixed-point computation refers to the process of computing an exact or approximate fixed point of a given function. [1] In its most common form, the given function f {\displaystyle f} satisfies the condition to the Brouwer fixed-point theorem : that is, f {\displaystyle f} is continuous and maps the unit d -cube to itself.
The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part. A number of other notations have been used for the same purpose.
As an example, when using an unsigned 8-bit fixed-point format (which has 4 integer bits and 4 fractional bits), the highest representable integer value is 15, and the highest representable mixed value is 15.9375 (0xF.F or 1111.1111 b). If the desired real world values are in the range [0,160], they must be scaled to fit within this fixed-point ...
The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .
In his thesis, Boyce identified a pair of functions that commute under composition, but do not have a common fixed point, proving the fixed point conjecture to be false. [ 14 ] In 1963, Glenn Baxter and Joichi published a paper about the fixed points of the composite function h ( x ) = f ( g ( x ) ) = g ( f ( x ) ) {\displaystyle h(x)=f(g(x))=g ...