enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolute value (algebra) - Wikipedia

    en.wikipedia.org/wiki/Absolute_value_(algebra)

    The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).

  3. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [18] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...

  4. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    For given real functions representing actual physical quantities, often in terms of sines and cosines, corresponding complex functions are considered of which the real parts are the original quantities. For a sine wave of a given frequency, the absolute value |z| of the corresponding z is the amplitude and the argument arg z is the phase.

  5. Archimedean property - Wikipedia

    en.wikipedia.org/wiki/Archimedean_property

    By Ostrowski's theorem, every non-trivial absolute value on the rational numbers is equivalent to either the usual absolute value or some -adic absolute value. The rational field is not complete with respect to non-trivial absolute values; with respect to the trivial absolute value, the rational field is a discrete topological space, so complete.

  6. Homogeneous function - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_function

    More generally, every norm and seminorm is a positively homogeneous function of degree 1 which is not a homogeneous function. As for the absolute value, if the norm or semi-norm is defined on a vector space over the complex numbers, this vector space has to be considered as vector space over the real number for applying the definition of a ...

  7. Sign function - Wikipedia

    en.wikipedia.org/wiki/Sign_function

    A subderivative value 0 occurs here because the absolute value function is at a minimum. The full family of valid subderivatives at zero constitutes the subdifferential interval [ − 1 , 1 ] {\displaystyle [-1,1]} , which might be thought of informally as "filling in" the graph of the sign function with a vertical line through the origin ...

  8. Legendre transformation - Wikipedia

    en.wikipedia.org/wiki/Legendre_transformation

    The function () is defined on the interval [,].For a given , the difference () takes the maximum at ′.Thus, the Legendre transformation of () is () = ′ (′).. In mathematics, the Legendre transformation (or Legendre transform), first introduced by Adrien-Marie Legendre in 1787 when studying the minimal surface problem, [1] is an involutive transformation on real-valued functions that are ...

  9. Positive and negative parts - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative_parts

    The converse, though, does not necessarily hold: for example, taking f as =, where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function. The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function.