enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often ...

  3. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    Thus, in a sufficiently rich hypothesis space—or equivalently, for an appropriately chosen kernel—the SVM classifier will converge to the simplest function (in terms of ) that correctly classifies the data. This extends the geometric interpretation of SVM—for linear classification, the empirical risk is minimized by any function whose ...

  4. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    For degree-d polynomials, the polynomial kernel is defined as [2](,) = (+)where x and y are vectors of size n in the input space, i.e. vectors of features computed from training or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms in the polynomial.

  5. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    www.kernel-machines.org "Support Vector Machines and Kernel based methods (Smola & Schölkopf)". www.gaussianprocess.org "Gaussian Processes: Data modeling using Gaussian Process priors over functions for regression and classification (MacKay, Williams)". www.support-vector.net "Support Vector Machines and kernel based methods (Cristianini)".

  6. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    Since the value of the RBF kernel decreases with distance and ranges between zero (in the infinite-distance limit) and one (when x = x'), it has a ready interpretation as a similarity measure. [2] The feature space of the kernel has an infinite number of dimensions; for =, its expansion using the multinomial theorem is: [3]

  7. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  8. Positive-definite kernel - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_kernel

    In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations .

  9. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    In the finite element method, the Gram matrix arises from approximating a function from a finite dimensional space; the Gram matrix entries are then the inner products of the basis functions of the finite dimensional subspace. In machine learning, kernel functions are often represented as Gram matrices. [2] (Also see kernel PCA)