Search results
Results from the WOW.Com Content Network
Shallow-water equations, in its non-linear form, is an obvious candidate for modelling turbulence in the atmosphere and oceans, i.e. geophysical turbulence. An advantage of this, over Quasi-geostrophic equations , is that it allows solutions like gravity waves , while also conserving energy and potential vorticity .
In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. . It is a vector quantity, possessing a magnitude and a directi
Examples of integrals of motion are the angular momentum vector, =, or a Hamiltonian without time dependence, such as (,) = + (). An example of a function that is a constant of motion but not an integral of motion would be the function C ( x , v , t ) = x − v t {\displaystyle C(x,v,t)=x-vt} for an object moving at a constant speed in one ...
The Navier–Stokes momentum equation can be derived as a particular form of the Cauchy momentum equation, whose general convective form is: = +. By setting the Cauchy stress tensor σ {\textstyle {\boldsymbol {\sigma }}} to be the sum of a viscosity term τ {\textstyle {\boldsymbol {\tau }}} (the deviatoric stress ) and a pressure term − p I ...
Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]
In the mean horizontal-momentum equation, d(x) is the still water depth, that is, the bed underneath the fluid layer is located at z = −d. Note that the mean-flow velocity in the mass and momentum equations is the mass transport velocity Ũ , including the splash-zone effects of the waves on horizontal mass transport, and not the mean ...
/ + / = / + / = / + / = / + / = We can look at the two moving bodies as one system of which the total momentum is , the total energy is and its velocity is the velocity of its center of mass. Relative to the center of momentum frame the total momentum equals zero.
A general momentum equation is obtained when the conservation relation is applied to momentum. When the intensive property φ is considered as the mass flux (also momentum density ), that is, the product of mass density and flow velocity ρ u , by substitution into the general continuity equation: