Search results
Results from the WOW.Com Content Network
SymPy is an open-source Python library for symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3] SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies.
Python Package Index (formerly the Python Cheese Shop) is the official directory of Python software libraries and modules; Useful Modules in the Python.org wiki; Organizations Using Python – a list of projects that make use of Python; Python.org editors – Multi-platform table of various Python editors
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
The Positive predictive value (PPV) of a test is the proportion of persons who are actually positive out of all those testing positive, and can be calculated from a sample as: PPV = True positive / Tested positive. If sensitivity, specificity, and prevalence are known, PPV can be calculated using Bayes' theorem.