enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    In mathematical optimization and computer science, a feasible region, feasible set, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. [1]

  3. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    The feasible regions of linear programming are defined by a set of inequalities. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size.

  4. Inequation - Wikipedia

    en.wikipedia.org/wiki/Inequation

    Solution set (portrayed as feasible region) for a sample list of inequations. Similar to equation solving, inequation solving means finding what values (numbers, functions, sets, etc.) fulfill a condition stated in the form of an inequation or a conjunction of several inequations.

  5. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    In mathematics, Farkas' lemma is a solvability theorem for a finite system of linear inequalities. It was originally proven by the Hungarian mathematician Gyula Farkas . [ 1 ] Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively ...

  6. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  7. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    A closed feasible region of a problem with three variables is a convex polyhedron. The surfaces giving a fixed value of the objective function are planes (not shown). The linear programming problem is to find a point on the polyhedron that is on the plane with the highest possible value.

  8. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution

  9. Active-set method - Wikipedia

    en.wikipedia.org/wiki/Active-set_method

    Consider the problem of Linearly Constrained Convex Quadratic Programming. Under reasonable assumptions (the problem is feasible, the system of constraints is regular at every point, and the quadratic objective is strongly convex), the active-set method terminates after finitely many steps, and yields a global solution to the problem.