Search results
Results from the WOW.Com Content Network
Total sum of squares. In statistical data analysis the total sum of squares (TSS or SST) is a quantity that appears as part of a standard way of presenting results of such analyses. For a set of observations, , it is defined as the sum over all squared differences between the observations and their overall mean .:
The sum of squares is not factorable. The squared Euclidean distance between two points, equal to the sum of squares of the differences between their coordinates. Heron's formula for the area of a triangle can be re-written as using the sums of squares of a triangle's sides (and the sums of the squares of squares)
Residual sum of squares. In statistics, the residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation ...
The characteristic function. of the sum of two independent random variables X and Y is just the product of the two separate characteristic functions: of X and Y. The characteristic function of the normal distribution with expected value μ and variance σ 2 is. {\displaystyle \varphi (t)=\exp \left (it\mu - {\sigma ^ {2}t^ {2} \over 2}\right).} So.
Definition. The explained sum of squares (ESS) is the sum of the squares of the deviations of the predicted values from the mean value of a response variable, in a standard regression model — for example, yi = a + b1x1i + b2x2i + ... + εi, where yi is the i th observation of the response variable, xji is the i th observation of the j th ...
The sum of squares of residuals, also called the residual sum of squares: The total sum of squares (proportional to the variance of the data): The most general definition of the coefficient of determination is. In the best case, the modeled values exactly match the observed values, which results in and R2 = 1.
It is calculated as the sum of squares of the prediction residuals for those observations. [ 1 ] [ 2 ] [ 3 ] Specifically, the PRESS statistic is an exhaustive form of cross-validation, as it tests all the possible ways that the original data can be divided into a training and a validation set.
In statistics, the number of degrees of freedom is the number of values in the final calculation of a statistic that are free to vary. [1] Estimates of statistical parameters can be based upon different amounts of information or data. The number of independent pieces of information that go into the estimate of a parameter is called the degrees ...