Search results
Results from the WOW.Com Content Network
A logical matrix, binary matrix, relation matrix, Boolean matrix, or (0, 1)-matrix is a matrix with entries from the Boolean domain B = {0, 1}. Such a matrix can be used to represent a binary relation between a pair of finite sets. It is an important tool in combinatorial mathematics and theoretical computer science.
Xcas/Giac is an open-source project developed at the Joseph Fourier University of Grenoble since 2000. Written in C++, maintained by Bernard Parisse's et al. and available for Windows, Mac, Linux and many others platforms. It has a compatibility mode with Maple, Derive and MuPAD software and TI-89, TI-92 and Voyage 200 calculators.
The left figure below shows a binary decision tree (the reduction rules are not applied), and a truth table, each representing the function (,,).In the tree on the left, the value of the function can be determined for a given variable assignment by following a path down the graph to a terminal.
The matrix for negation is Russell's, alongside of which is the matrix for material implication in the hand of Ludwig Wittgenstein. It is shown that an unpublished manuscript identified as composed by Peirce in 1893 includes a truth table matrix that is equivalent to the matrix for material implication discovered by John Shosky.
In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values (true or false). [1] [2] Truth values are used in computing as well as various types of logic.
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). [1] [2] Alternative names are switching function, used especially in older computer science literature, [3] [4] and truth function (or logical function), used in logic.
From a classical semantic perspective, material implication is the binary truth functional operator which returns "true" unless its first argument is true and its second argument is false. This semantics can be shown graphically in a truth table such as the one below.
These can be arranged into a 2×2 contingency table (confusion matrix), conventionally with the test result on the vertical axis and the actual condition on the horizontal axis. These numbers can then be totaled, yielding both a grand total and marginal totals. Totaling the entire table, the number of true positives, false negatives, true ...