enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    The acceleration of a falling body in the absence of resistances to motion is dependent only on the gravitational field strength g (also called acceleration due to gravity). By Newton's Second Law the force F g {\displaystyle \mathbf {F_{g}} } acting on a body is given by: F g = m g . {\displaystyle \mathbf {F_{g}} =m\mathbf {g} .}

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Consequently, the acceleration is the second derivative of position, [7] often written . Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to ...

  6. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    The net acceleration is directed towards the interior of the circle (but does not pass through its center). The net acceleration may be resolved into two components: tangential acceleration and centripetal acceleration. Unlike tangential acceleration, centripetal acceleration is present in both uniform and non-uniform circular motion.

  7. Centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_force

    Newton's law of motion for a particle of mass m written in vector form is: = , where F is the vector sum of the physical forces applied to the particle and a is the absolute acceleration (that is, acceleration in an inertial frame) of the particle, given by: = , where r is the position vector of the particle (not to be confused with radius, as ...

  8. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    Acceleration is the second derivative of displacement i.e. acceleration can be found by differentiating position with respect to time twice or differentiating velocity with respect to time once. [10] The SI unit of acceleration is m ⋅ s − 2 {\displaystyle \mathrm {m\cdot s^{-2}} } or metre per second squared .

  9. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    a cm is the linear acceleration of the center of mass of the body, m is the mass of the body, α is the angular acceleration of the body, and; I is the moment of inertia of the body about its center of mass. See also Euler's equations (rigid body dynamics).