Search results
Results from the WOW.Com Content Network
A stationary object (or set of objects) is in "static equilibrium," which is a special case of mechanical equilibrium. A paperweight on a desk is an example of static equilibrium. Other examples include a rock balance sculpture, or a stack of blocks in the game of Jenga , so long as the sculpture or stack of blocks is not in the state of ...
Supposing that the system was constantly at rest – this meaning mechanical equilibrium (i.e. net forces and torques zero) – with the two bodies thus hanging also at rest, but having different centrifugal forces upon them and consequently exerting different torques on the rod through the reactions of the tensions, the rod then would ...
This is the sum of all the force vectors and is equal to zero as there is mechanical equilibrium. Since the equilibrium holds for the external forces on the entire truss construction, it also holds for the internal forces acting on each joint. For a joint to be at rest the sum of the forces on a joint must also be equal to zero.
Equilibrant force. In mechanics, an equilibrant force is a force which brings a body into mechanical equilibrium. [1] According to Newton's second law, a body has zero acceleration when the vector sum of all the forces acting upon it is zero:
In physics, Lami's theorem is an equation relating the magnitudes of three coplanar, concurrent and non-collinear vectors, which keeps an object in static equilibrium, with the angles directly opposite to the corresponding vectors.
This equal area rule can also be derived by making use of the Helmholtz free energy. [24] In any event the Maxwell construction derives from the Gibbs condition of material equilibrium. However, even though g f = g g {\displaystyle g_{f}=g_{g}} is more fundamental it is more abstract than the equal area rule, which is understood geometrically.
The various aspects of such equilibrium are directly connected to a specific transport: heat transfer is the system's attempt to achieve thermal equilibrium with its environment, just as mass and momentum transport move the system towards chemical and mechanical equilibrium. [citation needed]
Analytical mechanics aims at even more: not at understanding the mathematical structure of a single mechanical problem, but that of a class of problems so wide that they encompass most of mechanics. It concentrates on systems to which Lagrangian or Hamiltonian equations of motion are applicable and that include a very wide range of problems indeed.