Search results
Results from the WOW.Com Content Network
The reachable Universe as a function of time and distance, in context of the expanding Universe.. In cosmology, the event horizon of the observable universe is the largest comoving distance from which light emitted now can ever reach the observer in the future.
Within an apparent horizon, light does not move outward; this is in contrast with the event horizon. In a dynamical spacetime, there can be outgoing light rays exterior to an apparent horizon (but still interior to the event horizon). An apparent horizon is a local notion of the boundary of a black hole, whereas an event horizon is a global notion.
According to the special theory of relativity introduced by Albert Einstein, it is impossible to say in an absolute sense that two distinct events occur at the same time if those events are separated in space. If one reference frame assigns precisely the same time to two events that are at different points in space, a reference frame that is ...
In general relativity, a naked singularity is a hypothetical gravitational singularity without an event horizon.. When there exists at least one causal geodesic that, in the future, extends to an observer either at infinity or to an observer comoving with the collapsing cloud, and in the past terminates at the gravitational singularity, then that singularity is referred to as a naked ...
An event in the universe is caused by the set of events in its causal past. An event contributes to the occurrence of events in its causal future. Upon choosing a frame of reference, one can assign coordinates to the event: three spatial coordinates = (,,) to describe the location and one time coordinate to specify the moment at which the event ...
An event is an abstract data type with a boolean state and the following operations: wait - when executed, causes the suspension of the executing process until the state of the event is set to true. If the state is already set to true before wait was called, wait has no effect.
For instance, by the second law of black hole mechanics, the area of the event horizon of a general black hole will never decrease with time, analogous to the entropy of a thermodynamic system. This limits the energy that can be extracted by classical means from a rotating black hole (e.g. by the Penrose process). [159]
Event propagation models, such as bubbling, capturing, and pub/sub, define how events are distributed and handled within a system. Other key aspects include event loops, event queueing and prioritization, event sourcing, and complex event processing patterns. These mechanisms contribute to the flexibility and scalability of event-driven systems.