Search results
Results from the WOW.Com Content Network
It encodes the common concept of relation: an element is related to an element , if and only if the pair (,) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the "divides" relation over the set of prime numbers and the set of integers, in which each prime is related to each integer that is ...
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
A logical matrix, binary matrix, relation matrix, Boolean matrix, or (0, 1)-matrix is a matrix with entries from the Boolean domain B = {0, 1}. Such a matrix can be used to represent a binary relation between a pair of finite sets. It is an important tool in combinatorial mathematics and theoretical computer science.
In mathematics, a dependence relation is a binary relation which generalizes the relation of linear dependence.. Let be a set.A (binary) relation between an element of and a subset of is called a dependence relation, written , if it satisfies the following properties:
A symmetric relation is a type of binary relation. Formally, a binary relation R over a set X is symmetric if: [1], (), where the notation aRb means that (a, b) ∈ R. An example is the relation "is equal to", because if a = b is true then b = a is also true.
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation R ; S from two given binary relations R and S. In the calculus of relations, the composition of relations is called relative multiplication, [1] and its result is called a relative product.
From this definition, it's apparent one may define the joinability relation as , where is the composition of relations. Joinability is usually denoted, somewhat confusingly, also with ↓ {\displaystyle \downarrow } , but in this notation the down arrow is a binary relation, i.e. we write x ↓ y {\displaystyle x{\mathbin {\downarrow }}y} if x ...
In mathematics, an idempotent binary relation is a binary relation R on a set X (a subset of Cartesian product X × X) for which the composition of relations R ∘ R is the same as R. [ 1 ] [ 2 ] This notion generalizes that of an idempotent function to relations.