Search results
Results from the WOW.Com Content Network
Maltose (/ ˈ m ɔː l t oʊ s / [2] or / ˈ m ɔː l t oʊ z / [3]), also known as maltobiose or malt sugar, is a disaccharide formed from two units of glucose joined with an α(1→4) bond. In the isomer isomaltose , the two glucose molecules are joined with an α(1→6) bond.
Working from the non-reducing end, β-amylase catalyzes the hydrolysis of the second α-1,4 glycosidic bond, cleaving off two glucose units at a time. During the ripening of fruit, β-amylase breaks starch into maltose, resulting in the sweet flavor of ripe fruit. β-amylase is present in an inactive form prior to seed germination.
The reaction often favors formation of the α-glycosidic bond as shown due to the anomeric effect. A glycosidic bond is formed between the hemiacetal or hemiketal group of a saccharide (or a molecule derived from a saccharide) and the hydroxyl group of some compound such as an alcohol. A substance containing a glycosidic bond is a glycoside.
α-Amylase is an enzyme (EC 3.2.1.1; systematic name 4-α-D-glucan glucanohydrolase) that hydrolyses α bonds of large, α-linked polysaccharides, such as starch and glycogen, yielding shorter chains thereof, dextrins, and maltose, through the following biochemical process: [2]
When the glycosidic linkages and configurations of the monosaccharides are known, they may be included as a prefix to the name, with the notation for glycosidic linkages preceding the symbols designating the configuration. [3] The following example will help illustrate this concept: (1→4)-β-D-Glucan
Hydrolysis reaction of Maltose being broken at the 1-4 alpha-glucosidase linkage. The mechanism of all FamilyGH13 enzymes is to break a α-glucosidase linkage by hydrolyzing it. Maltase focuses on breaking apart maltose, a disaccharide that is a link between 2 units of glucose, at the α-(1->4) bond.
There are two functionally different classes of disaccharides: Reducing disaccharides, in which one monosaccharide, the reducing sugar of the pair, still has a free hemiacetal unit that can perform as a reducing aldehyde group; lactose, maltose and cellobiose are examples of reducing disaccharides, each with one hemiacetal unit, the other occupied by the glycosidic bond, which prevents it from ...
γ-Amylase (EC 3.2.1.3 ) (alternative names: Glucan 1,4-a-glucosidase; amyloglucosidase; exo-1,4-α-glucosidase; glucoamylase; lysosomal α-glucosidase; 1,4-α-D-glucan glucohydrolase) will cleave α(1–6) glycosidic linkages, as well as the last α-1,4 glycosidic bond at the nonreducing end of amylose and amylopectin, yielding glucose. The γ ...