enow.com Web Search

  1. Ad

    related to: weight flow rate to mass flow rate formula for a pipe of water

Search results

  1. Results from the WOW.Com Content Network
  2. Mass flow rate - Wikipedia

    en.wikipedia.org/wiki/Mass_flow_rate

    Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.

  3. Mass flux - Wikipedia

    en.wikipedia.org/wiki/Mass_flux

    Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.

  4. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    For this reason flux represents physically a flow per unit area. ... Mass current, mass flow rate: I m = / kg s −1 [M ... W app = Apparent weight of immersed ...

  5. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    For a compressible fluid in a tube the volumetric flow rate Q(x) and the axial velocity are not constant along the tube; but the mass flow rate is constant along the tube length. The volumetric flow rate is usually expressed at the outlet pressure. As fluid is compressed or expanded, work is done and the fluid is heated or cooled.

  6. Choked flow - Wikipedia

    en.wikipedia.org/wiki/Choked_flow

    The flow of real gases through thin-plate orifices never becomes fully choked. The mass flow rate through the orifice continues to increase as the downstream pressure is lowered to a perfect vacuum, though the mass flow rate increases slowly as the downstream pressure is reduced below the critical pressure. [10]

  7. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q.

  8. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

  9. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)

  1. Ad

    related to: weight flow rate to mass flow rate formula for a pipe of water