Search results
Results from the WOW.Com Content Network
YCbCr is sometimes abbreviated to YCC.Typically the terms Y′CbCr, YCbCr, YPbPr and YUV are used interchangeably, leading to some confusion. The main difference is that YPbPr is used with analog images and YCbCr with digital images, leading to different scaling values for U max and V max (in YCbCr both are ) when converting to/from YUV.
RGB use in color space definitions employ primaries (and often a white point) based on the RGB color model, to map to real world color. Applying Grassmann's law of light additivity, the range of colors that can be produced are those enclosed within the triangle on the chromaticity diagram defined using the primaries as vertices .
The values of Y are in the range from 0 to 1, while Co and Cg are in the range of −0.5 to 0.5, as is typical with "YCC" color models such as YCbCr. For example, pure red is expressed in the RGB system as (1, 0, 0) and in the YCoCg system as ( 1 / 4 , 1 / 2 , − 1 / 4 ).
A popular way to make a color space like RGB into an absolute color is to define an ICC profile, which contains the attributes of the RGB. This is not the only way to express an absolute color, but it is the standard in many industries. RGB colors defined by widely accepted profiles include sRGB and Adobe RGB.
The scope of the terms Y′UV, YUV, YCbCr, YPbPr, etc., is sometimes ambiguous and overlapping. Y′UV is the separation used in PAL. YDbDr is the format used in SECAM and PAL-N, unusually based on non-gamma-corrected (linear) RGB, making the Y component true luminance. Y′IQ is the format used in NTSC television.
The analogue YUV and digital YCbCr refer to a variety of linear methods to try to separate lightness from chroma signals in an RGB input using linear combination. As the input RGB values are gamma-corrected, such a separation does not truly produce lightness and two chroma signals, but a "luma" signal and two "chrominance" signals instead.
For example, applying a histogram equalization directly to the channels in an RGB image would alter the color balance of the image. Instead, the histogram equalization is applied to the Y channel of the YIQ or YUV representation of the image, which only normalizes the brightness levels of the image.
For example, when an ordinary RGB digital image is compressed via the JPEG standard, the RGB color space is first converted (by a rotation matrix) to a YCbCr color space, because the three components in that space have less correlation redundancy and because the chrominance components can then be subsampled by a factor of 2 or 4 to further ...