Search results
Results from the WOW.Com Content Network
The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).
Since the potentials are only defined up to gauge equivalence, we are free to impose additional equations on the potentials, as long as for every pair of potentials there is a gauge equivalent pair that satisfies the additional equations (i.e. if the gauge fixing equations define a slice to the gauge action). The gauge-fixed potentials still ...
This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [ 1 ] [ 2 ] [ 3 ] and that the particles are free.
The multipole expansion circumvents this difficulty by expanding not E or B, but r ⋅ E or r ⋅ B into spherical harmonics. These expansions still solve the original Helmholtz equations for E and B because for a divergence-free field F, ∇ 2 (r ⋅ F) = r ⋅ (∇ 2 F). The resulting expressions for a generic electromagnetic field are:
The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c 2). Because the speed of light is a large number in everyday units (approximately 300 000 km/s or 186 000 mi/s), the formula implies that a small amount of mass corresponds to an enormous amount of energy.
Using the Maxwell equations, one can see that the electromagnetic stress–energy tensor (defined above) satisfies the following differential equation, relating it to the electromagnetic tensor and the current four-vector , + = or , + =, which expresses the conservation of linear momentum and energy by electromagnetic interactions.
Maxwell's equations seem overdetermined, in that they involve six unknowns (the three components of E and B) but eight equations (one for each of the two Gauss's laws, three vector components each for Faraday's and Ampère's circuital laws).
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]