Search results
Results from the WOW.Com Content Network
The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45°. [1] In the table below, the label "Undefined" represents a ratio :
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
If units of degrees are intended, the degree sign must be explicitly shown (sin x°, cos x°, etc.). Using this standard notation, the argument x for the trigonometric functions satisfies the relationship x = (180x/ π)°, so that, for example, sin π = sin 180° when we take x = π.
A significant improvement is to use the following modification to the above, a trick (due to Singleton [2]) often used to generate trigonometric values for FFT implementations: c 0 = 1 s 0 = 0 c n+1 = c n − (α c n + β s n) s n+1 = s n + (β c n − α s n) where α = 2 sin 2 (π/N) and β = sin(2π/N).
Because PQ has length y 1, OQ length x 1, and OP has length 1 as a radius on the unit circle, sin(t) = y 1 and cos(t) = x 1. Having established these equivalences, take another radius OR from the origin to a point R(− x 1 , y 1 ) on the circle such that the same angle t is formed with the negative arm of the x -axis.
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such as sine. [3] Throughout history, trigonometry has been applied in areas such as geodesy, surveying, celestial mechanics, and navigation. [4]
With a correct value for its seven first decimal digits, this value remained the most accurate approximation of π available for the next 800 years. [58] The Indian astronomer Aryabhata used a value of 3.1416 in his Āryabhaṭīya (499 AD). [59] Fibonacci in c. 1220 computed 3.1418 using a polygonal method, independent of Archimedes. [60]