Search results
Results from the WOW.Com Content Network
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
Mathematically, if the change in the numerator is similar to the change in the denominator, the delta ratio will be close to 1. Since the anions are unable to diffuse out of the bloodstream, while bicarbonate and hydrogen ions diffuse with ease (as H 2 CO 3, carbonic acid), the usual result will be closer to a delta ratio of 1 to 2.
The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula := = for some given period . [1]
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
It may be that the function f can be expressed as a quotient of two functions, () = (), where g and h are holomorphic functions in a neighbourhood of c, with h(c) = 0 and h'(c) ≠ 0. In such a case, L'Hôpital's rule can be used to simplify the above formula to:
Current ratio vs. quick ratio vs. debt-to-equity Other measures of liquidity and solvency that are similar to the current ratio might be more useful, depending on the situation.