enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations. [1] The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures).

  3. Convolution for optical broad-beam responses in scattering ...

    en.wikipedia.org/wiki/Convolution_for_optical...

    There are two common methods used to implement discrete convolution: the definition of convolution and fast Fourier transformation (FFT and IFFT) according to the convolution theorem. To calculate the optical broad-beam response, the impulse response of a pencil beam is convolved with the beam function.

  4. Point spread function - Wikipedia

    en.wikipedia.org/wiki/Point_spread_function

    By virtue of the linearity property of optical non-coherent imaging systems, i.e., . Image(Object 1 + Object 2) = Image(Object 1) + Image(Object 2). the image of an object in a microscope or telescope as a non-coherent imaging system can be computed by expressing the object-plane field as a weighted sum of 2D impulse functions, and then expressing the image plane field as a weighted sum of the ...

  5. Transconvolution - Wikipedia

    en.wikipedia.org/wiki/Transconvolution

    The second point spread function does not have to represent a real tomograph, but can be purposely defined to represent a virtual tomograph with corresponding properties. . Based on the definition of a standardized virtual tomograph and the determination of the imaging properties of different real tomographs, the transconvolution method allows a uniform and quantitatively comparable ...

  6. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  7. Convulsion - Wikipedia

    en.wikipedia.org/wiki/Convulsion

    A convulsion is a medical condition where the body muscles contract and relax rapidly and repeatedly, resulting in uncontrolled shaking. [1] Because epileptic seizures typically include convulsions, the term convulsion is often used as a synonym for seizure. [1]

  8. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space.

  9. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.