enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Each file represents a single experiment and contains a single anomaly. The dataset represents a multivariate time series collected from the sensors installed on the testbed. There are two markups for Outlier detection (point anomalies) and Changepoint detection (collective anomalies) problems 30+ files (v0.9) CSV Anomaly detection

  3. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    RAWPED is a dataset for detection of pedestrians in the context of railways. The dataset is labeled box-wise. 26000 Images Object recognition and classification 2020 [70] [71] Tugce Toprak, Burak Belenlioglu, Burak Aydın, Cuneyt Guzelis, M. Alper Selver OSDaR23 OSDaR23 is a multi-sensory dataset for detection of objects in the context of railways.

  4. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    Supervised anomaly detection techniques require a data set that has been labeled as "normal" and "abnormal" and involves training a classifier. However, this approach is rarely used in anomaly detection due to the general unavailability of labelled data and the inherent unbalanced nature of the classes.

  5. Caffe (software) - Wikipedia

    en.wikipedia.org/wiki/Caffe_(software)

    Anomaly detection. RANSAC; k-NN; ... List of datasets for machine-learning research. ... Yahoo! has also integrated Caffe with Apache Spark to create CaffeOnSpark, ...

  6. Anomaly Detection at Multiple Scales - Wikipedia

    en.wikipedia.org/wiki/Anomaly_Detection_at...

    A final report was published on May 11, 2015, detailing a system known as Anomaly Detection Engine for Networks, ... Using multiple datasets from Wikipedia, ...

  7. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    Isolation Forest is an algorithm for data anomaly detection using binary trees.It was developed by Fei Tony Liu in 2008. [1] It has a linear time complexity and a low memory use, which works well for high-volume data.

  8. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.

  9. ImageNet - Wikipedia

    en.wikipedia.org/wiki/ImageNet

    In 2021, ImageNet-1k was updated by annotating faces appearing in the 997 non-person categories. They found training models on the dataset with these faces blurred caused minimal loss in performance. [31] ImageNetV2 was a new dataset containing three test sets with 10,000 each, constructed by the same methodology as the original ImageNet. [32]