Search results
Results from the WOW.Com Content Network
In particular, any tensor product of R-modules can be constructed, if so desired, as a quotient of a tensor product of abelian groups by imposing the R-balanced product property. More category-theoretically, let σ be the given right action of R on M ; i.e., σ( m , r ) = m · r and τ the left action of R of N .
0 (A, B) ≅ A ⊗ R B for any right R-module A and left R-module B. Tor R i (A, B) = 0 for all i > 0 if either A or B is flat (for example, free) as an R-module. In fact, one can compute Tor using a flat resolution of either A or B; this is more general than a projective (or free) resolution. [5] There are converses to the previous statement ...
In particular, () is the usual tensor product of modules M and N over R. Geometrically, the derived tensor product corresponds to the intersection product (of derived schemes ). Example : Let R be a simplicial commutative ring , Q ( R ) → R be a cofibrant replacement, and Ω Q ( R ) 1 {\displaystyle \Omega _{Q(R)}^{1}} be the module of ...
For any commutative ring R, the category of R-algebras is monoidal with the tensor product of algebras as the product and R as the unit. The category of pointed spaces (restricted to compactly generated spaces for example) is monoidal with the smash product serving as the product and the pointed 0-sphere (a two-point discrete space) serving as ...
Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another. The internal language of closed symmetric monoidal categories is linear logic and the type system is the linear type system. Many examples of closed monoidal categories are symmetric.
In this interpretation, the category End(R) = Bimod(R, R) is exactly the monoidal category of R-R-bimodules with the usual tensor product over R the tensor product of the category. In particular, if R is a commutative ring, every left or right R-module is canonically an R-R-bimodule, which gives a monoidal embedding of the category R-Mod into ...
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.
The tensor product of commutative algebras is of frequent use in algebraic geometry. For affine schemes X , Y , Z with morphisms from X and Z to Y , so X = Spec( A ), Y = Spec( R ), and Z = Spec( B ) for some commutative rings A , R , B , the fiber product scheme is the affine scheme corresponding to the tensor product of algebras: