Search results
Results from the WOW.Com Content Network
For example, if two fair six-sided dice are thrown to generate two uniformly distributed integers, and , each in the range from 1 to 6, inclusive, the 36 possible ordered pairs of outcomes (,) constitute a sample space of equally likely events. In this case, the above formula applies, such as calculating the probability of a particular sum of ...
For example, when tossing an ordinary coin, one typically assumes that the outcomes "head" and "tail" are equally likely to occur. An implicit assumption that all outcomes are equally likely underpins most randomization tools used in common games of chance (e.g. rolling dice , shuffling cards , spinning tops or wheels, drawing lots , etc.).
In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...
The theory of chance consists in reducing all the events of the same kind to a certain number of cases equally possible, that is to say, to such as we may be equally undecided about in regard to their existence, and in determining the number of cases favorable to the event whose probability is sought.
More commonly, probability distributions are used to compare the relative occurrence of many different random values. Probability distributions can be defined in different ways and for discrete or for continuous variables. Distributions with special properties or for especially important applications are given specific names.
Only two of these possible events meet the criteria specified in the question (i.e., GG, GB). Since both of the two possibilities in the new sample space {GG, GB} are equally likely, and only one of the two, GG, includes two girls, the probability that the younger child is also a girl is 1 / 2 .
This is incorrect and is an example of the gambler's fallacy. The event "5 heads in a row" and the event "first 4 heads, then a tails" are equally likely, each having probability 1 / 32 . Since the first four tosses turn up heads, the probability that the next toss is a head is: