Search results
Results from the WOW.Com Content Network
T6 temper 6061 has been treated to provide the maximum precipitation hardening (and therefore maximum yield strength) for a 6061 aluminium alloy. It has an ultimate tensile strength of at least 290 MPa (42 ksi) and yield strength of at least 240 MPa (35 ksi). More typical values are 310 MPa (45 ksi) and 270 MPa (39 ksi), respectively. [10] This ...
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
2024-O temper aluminium has no heat treating. It has an ultimate tensile strength of 140–210 MPa (21–30 ksi), and maximum yield strength of no more than 97 MPa (14,000 psi). The material has elongation (stretch before ultimate failure) of 10–25%, this is the allowable range per applicable AMS specifications.
T6 temper 6063 has an ultimate tensile strength of at least 190 MPa (28,000 psi) and yield strength of at least 160 MPa (23,000 psi). In thicknesses of 3.15 millimetres (0.124 in) or less, it has elongation of 8% or more; in thicker sections, it has elongation of 10%.
7068-T6511 has typical ultimate tensile strength of 710 MPa (103 ksi) versus a similar product produced from 7075-T6511 that would have a typical ultimate tensile strength of 640 MPa (93 ksi). Typical yield strength for alloy 7068-T6511 is 683 MPa (99.1 ksi) versus 590 MPa (86 ksi) for a similar product produced from 7075-T6511. [2]
1370 Aluminium alloy is primarily aluminium ... Tensile Strength, Ultimate: 83.0 MPa Tensile Strength, Yield: 28.0 MPa Elongation at Break: 28 % Modulus of Elasticity:
2014 aluminium alloy (aluminum) is an aluminium-based alloy often used in the aerospace industry. [1] ... Ultimate tensile strength: 190 to 480 MPa, or 28 to 70 ksi.
Unhardened 5086 has a yield strength of 120 MPa (17 ksi) and ultimate tensile strength of 260 MPa (38 ksi) from −28 to 100 °C (−18 to 212 °F). At cryogenic temperatures it is slightly stronger: at −196 °C (−321 °F), yield of 130 MPa (19 ksi) and ultimate tensile strength of 380 MPa (55 ksi); above 100 °C (212 °F) its strength is reduced.