enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a closed interval, then by the extreme value theorem, global maxima and minima exist. Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the ...

  3. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The critical points of Lagrangians occur at saddle points, rather than at local maxima (or minima). [ 4 ] [ 17 ] Unfortunately, many numerical optimization techniques, such as hill climbing , gradient descent , some of the quasi-Newton methods , among others, are designed to find local maxima (or minima) and not saddle points.

  4. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.

  5. Fermat's theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem

    Fermat's theorem (stationary points), about local maxima and minima of differentiable functions; Fermat's principle, about the path taken by a ray of light; Fermat polygonal number theorem, about expressing integers as a sum of polygonal numbers; Fermat's right triangle theorem, about squares not being expressible as the difference of two ...

  6. Local property - Wikipedia

    en.wikipedia.org/wiki/Local_property

    Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [1]

  7. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.

  8. Stationary point - Wikipedia

    en.wikipedia.org/wiki/Stationary_point

    a local maximum (maximal turning point or relative maximum) is one where the derivative of the function changes from positive to negative; Saddle points (stationary points that are neither local maxima nor minima: they are inflection points. The left is a "rising point of inflection" (derivative is positive on both sides of the red point); the ...

  9. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    The conditions that distinguish maxima, or minima, from other stationary points are called 'second-order conditions' (see 'Second derivative test'). If a candidate solution satisfies the first-order conditions, then the satisfaction of the second-order conditions as well is sufficient to establish at least local optimality.