Search results
Results from the WOW.Com Content Network
In chemistry, delocalized electrons are electrons in a molecule, ion or solid metal that are not associated with a single atom or a covalent bond. [1] The term delocalization is general and can have slightly different meanings in different fields: In organic chemistry, it refers to resonance in conjugated systems and aromatic compounds.
Benzene, the most widely recognized aromatic compound with six delocalized π-electrons (4n + 2, for n = 1). In organic chemistry, Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4n + 2 π-electrons, where n is a non-negative integer.
Benzene and cyclohexane have a similar structure, only the ring of delocalized electrons and the loss of one hydrogen per carbon distinguishes it from cyclohexane. The molecule is planar. [ 58 ] The molecular orbital description involves the formation of three delocalized π orbitals spanning all six carbon atoms, while the valence bond ...
Two different resonance forms of benzene (top) combine to produce an average structure (bottom). In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone.
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
In the water molecule for example, ab initio calculations show bonding character primarily in two molecular orbitals, each with electron density equally distributed among the two O-H bonds. The localized orbital corresponding to one O-H bond is the sum of these two delocalized orbitals, and the localized orbital for the other O-H bond is their ...
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
The analogous cyclic system appears to have even more resonance stabilized, as the negative charge can be delocalized across three carbons instead of two. However, the cyclopropenyl anion has 4 π electrons in a cyclic system and in fact has a substantially higher pK a than 1-propene because it is antiaromatic and thus destabilized. [3]